

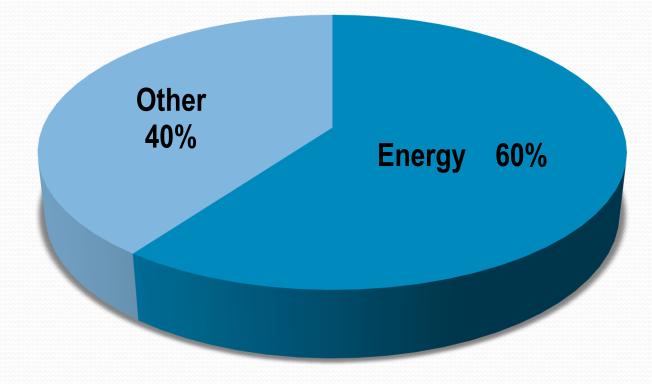
POTENTIAL OF ALTERNATIVE ENERGY DEV'T FOR ETHIOPIAN CEMENT INDUSTRY: THE CASE OF PROSOPIS

Who are WE...?

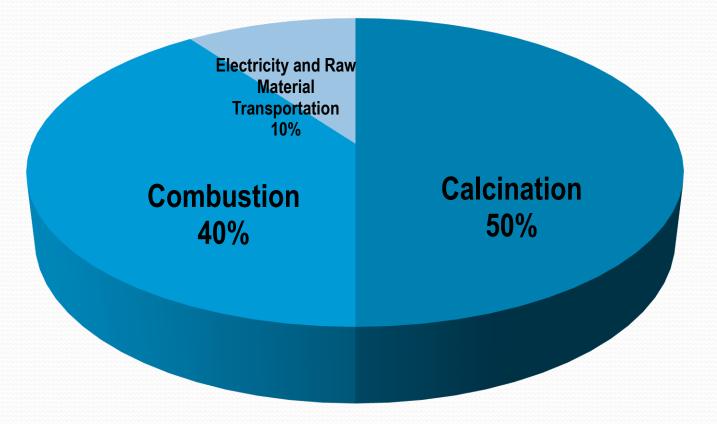
- East African Holding a leading business conglomerate in Ethiopia, playing prominent role in the Industrialization of the country since the last decade
- EAH is the umbrella company comprising of subsidiary companies which operate in sectors - manufacturing of Fast Moving Consumer Goods (FMCG), Agriculture, Agro Processing, Printing & Packaging, Transport, Real Estate, Cement Manufacturing, Ready Mix Concrete, Coal Mining and Biomass Projects
- EAH is also producing various types of Ethiopian coffee for local and export markets
- EAH is continuously evolving and strengthening its position as a major contributor in the development of the private sector in Ethiopia

Who are WE...?

EAH strategic plans include major expansion and diversification projects through mega industries - large scale mining, commercial farming and METALS Engineering Companies which will significantly contribute to the industrialization of the nation, in hand with the Growth and transformation development plans set out by the Government.



Ethiopian Cement Industries Profile


Company	Clinker Capacity (TPY)	Demand coal import (TPY)	Expenses co import US\$/Y		
NCS	1,000,000	140,000	25,200,000		
Messebo Cement Co.	2,100,000	286,500	51,570,000		
Mugher Cement Co.	1,600,000	218,800	39,384,000		
Derba Cem. Co.	1,850,000	250,000	45,000,000		
Dangote Cement	2,500,000	320,000	57,600,000		
Ethio Cement	750,000	100,000	18,000,000		
Habesha Cement	1,400,000	165,000	29,700,000		
Abay Cement (2022 start up)	1,650,000	210,000	37,800,000		
Total:	12,850,000	1,690,300	304,254,000		

COST OF PRODUCTION

CO₂ Emission Contribution

ALTERNATIVE FUELS?

Alternative fuels in cement industry refers to fuels that differ from toady's conventional fuels. Conventional fuels in today's cement industry context refers to Natural gas, Heavy Fuel Oil(HFO), Coal and Petcoke.

- **Alternative Fuels are categorized into**
- Waste Derived Fuels(WDF)
 - Plastics, paper, used tire, Sewage sludge, Refuse Derived fuel(RDF),Meat and Bone Meal (MBM),etc
- **Biofuels (Biomass Derived Fuels=BDF)**
- Agri-Wastes(Rice husk, Sesame Stalk, Coffee husk,Cotton stalk and etc)
- Forestry(Prosopis juliflora biomass,Bamboo tree, and etc)

WHY ALTERNATIVE FUELS?

For the environment

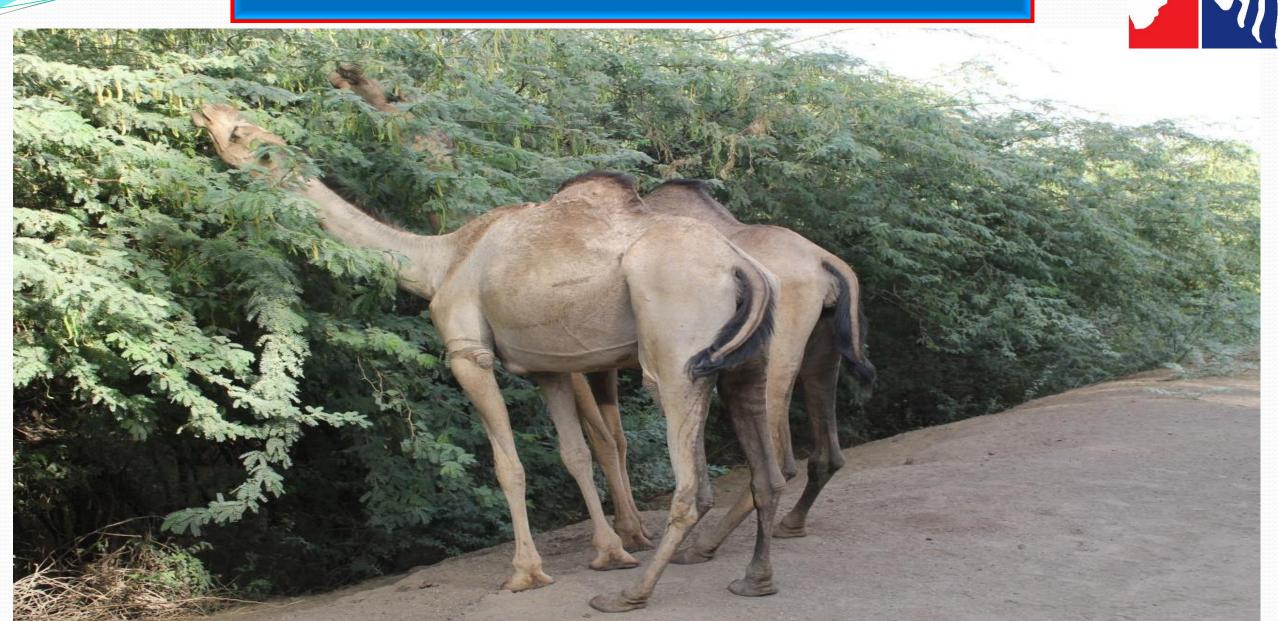
Net CO2 emission reduction

For the Society

alleviating the Problems caused by wastes, invasive trees + Job creation WHY ALTERNATIVE FUELS????

For the Government/Country Eases Foreign Currency burden

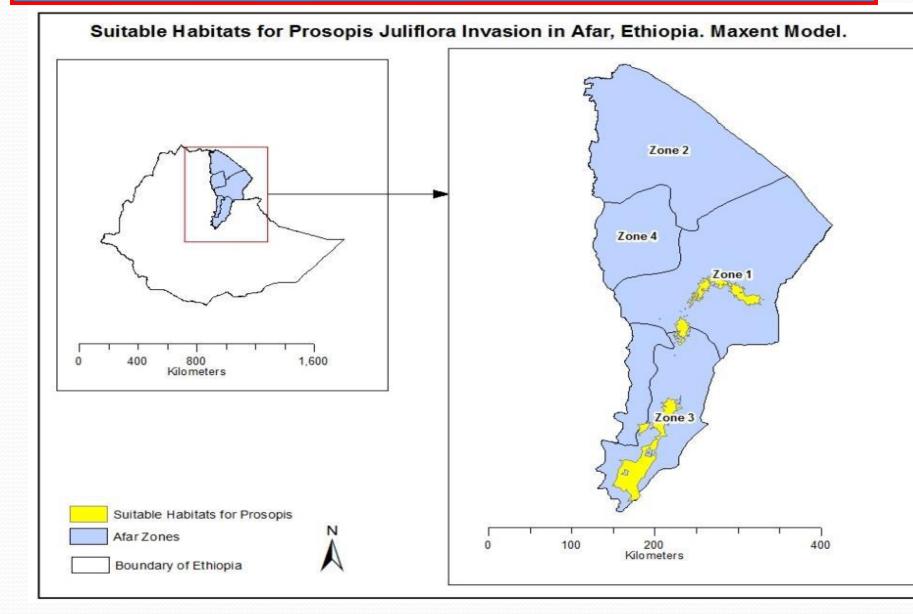
For the Cement Plants


Cost Reduction

ASSESMENT OF DIFFERENET ALTERNATIVE FUELS IN ETHIOPIA

			Net Calorific		Annual		
S.No	Alternative Fuel Name		Value (Kcal/Kg)	Ash Content(%)	Quantity (ton/annum)	Areas	Source
1	Prosopis Juliflora		4200-4900	1-2	>8million	Afar region	GIZ ,Own analysis
2	Bamboo Tree		4500	1-5	1million	All regions	Cement dev.Strategy
3	Coffee Husk		3900	11.4	214,299	Oromiya,SNNP,Ga mbela	UNDP,2001 data
4	Cotton Stalk		4100	3.3	400,301	Afar,Tigray,SNNP, Oromiya,Gambel a	UNDP,2006 data
5	Sesame Stalk		3800-4050	4-6	571,488	Tigray and Amhara Region	Regional Agri.Bureau and own computation,UNDP,FLS lab
6	Chat Stalk	Profiles.	N.A	N.A	110,000	Diredawa,Harar and Somali region	UNDP
7	Rice Husk/Straw		3700	15-20	925,014	All regions	EIAR,2014 Projected data and 0.49/1 ratio,other sources
8	Jatropha Seed cake/Oil		4635/9100	18.6/0.168	NA	All regions	Alternative Energy Development Directorate and Pramanic (2003),Science journal of Engineering
9	RDF		3500-4800	8-15	193,779	Mekelle, Direda wa, Harar and Addis Ababa	City Municipalities+own recomputation
10	Saw Dust	20	3800-4500	3.3	25,000	SNNP & Oromiya	Cement dev.Strategy,UNDP and others

PROSOPIS JULIFLORA UTILIZATION



Prosopis in Awash(Kesem kebena)

AREAS INVADED BY PROSOPIS

Local Biomass – Prosopis Juliflora

- PJ high quality fuel to be fired in cement kiln
- Environmentally completely friendly (CO2 neutral)
- Cleaner emissions from cement plants (no SO3, no heavy metals, no other gases, less fine dust etc.)
- Sustainable for infinite period!

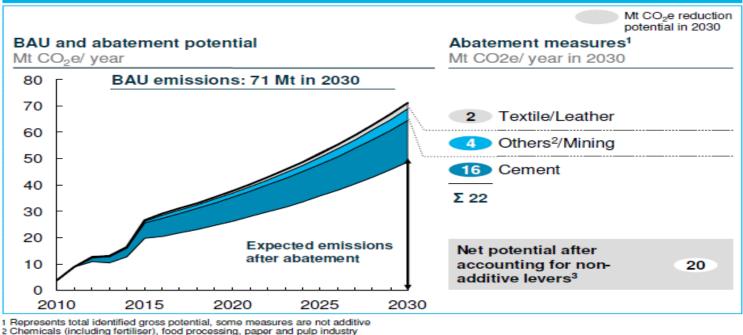
HOW TO REDUCE CO2 EMISSION?

- INCREASING ENERGY EFFICIENCY
- ALTERNATIVE FUEL AND MATERIALS UTILIZATION
- SUBSTITUTION OF CLINKER BY NATURALLY BURNED CEMENTIOUS MATERIALS (LIKE PUMICE, POZZOLANA ETC)
- UTILIZATION OF WASTE HEATS FOR THERMAL OR ELECTRIC ENERGY

REDUCE COST OF PRODUCTION

- INCREASING ENERGY EFFICIENCY
- ALTERNATIVE FUEL AND MATERIALS UTILIZATION
- SUBSTITUTION OF CLINKER BY NATURALLY BURNED CEMENTIOUS MATERIALS (LIKE PUMICE, POZZOLANA ETC)

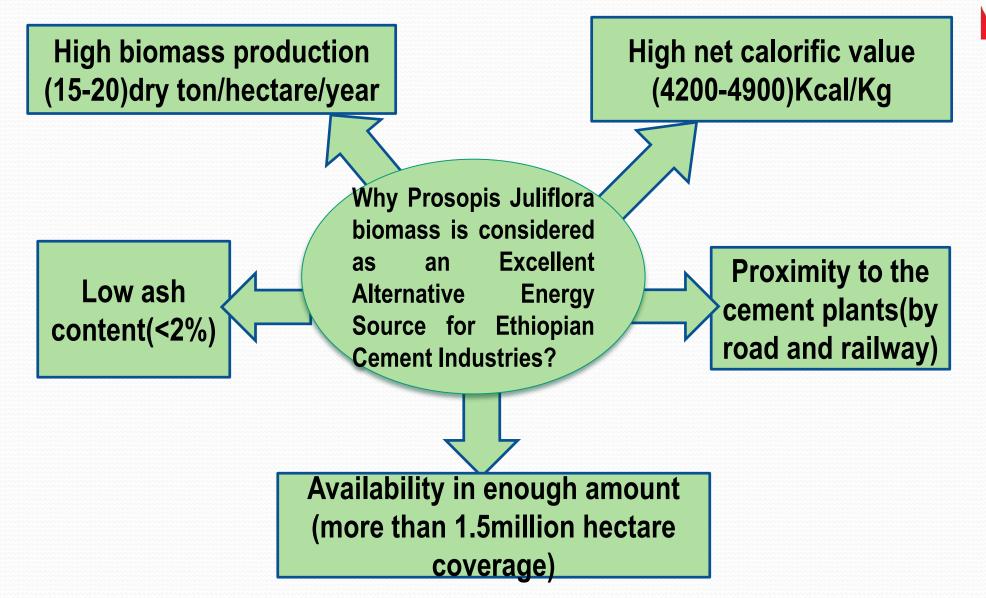
GOVERNMENT STRATEGIES FOR ALTERNATIVE FUEL


CLIMATE RESILIENT GREEN ECONOMY(CRGE)

Ethiopia's long term strategy of becoming middle income country by 2030

50% of Ethiopian Industry Sector GHG(CO2) emission comes from Cement Industry

>70% of Ethiopian Industry Sector GHG abatement potential is expected Cement Industry(Out of 22million ton CO2(2030) abatement potential ,16mt CO2 is expected from Cement Industry)


Considering 20% substitution of coal by biomass residues, an abatement potential of 4.2mtCO2 is expected in 2030

3 Assuming full implementation of all levers

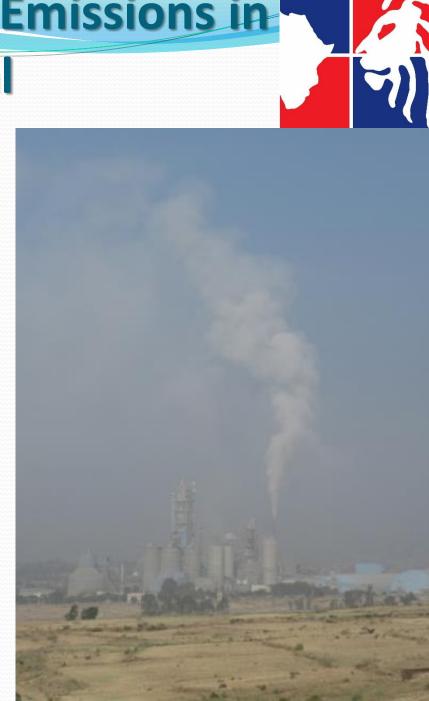
ECIDS has listed Alternative energy utilization in Ethiopian Cement industries among the recommended strategic Projects "it is imperative to invest in alternative energy sources in order to reduce cost of production and cement price." WHY PROSOPIS?

Saving US\$ and Fuel costs - NCSC

	Spending US\$ p. y.	Saving US\$ p. y.
Import Coal with FOREX (US\$) currently	\$ 24.710.400	
Substitution of coal with PJ (Biomass)	(spending FOREX p. y.)	(saving FOREX p. y.)
40%	\$ 14.826.240	\$ - 9.884.160
60%	\$ 9.884.160	\$ - 14.826.240
Costs processed PJ at cement kiln (calculated in US\$ but actual costs arise in Birr)	(spending local currency/Y)	
40%	\$ 4.537.500	
60%	\$ 6.798.000	
Total costs fuel (imported coal + PJ):	(spending fuel total p. y.)	(saving on fuel p. y.)
40%	\$ 19.363.740	\$ - 5.346.660
60% Creating Wealth Through	•	\$ - 8.028.240

Saving US\$ and Fuel costs – total Ethiopian Cement Industry

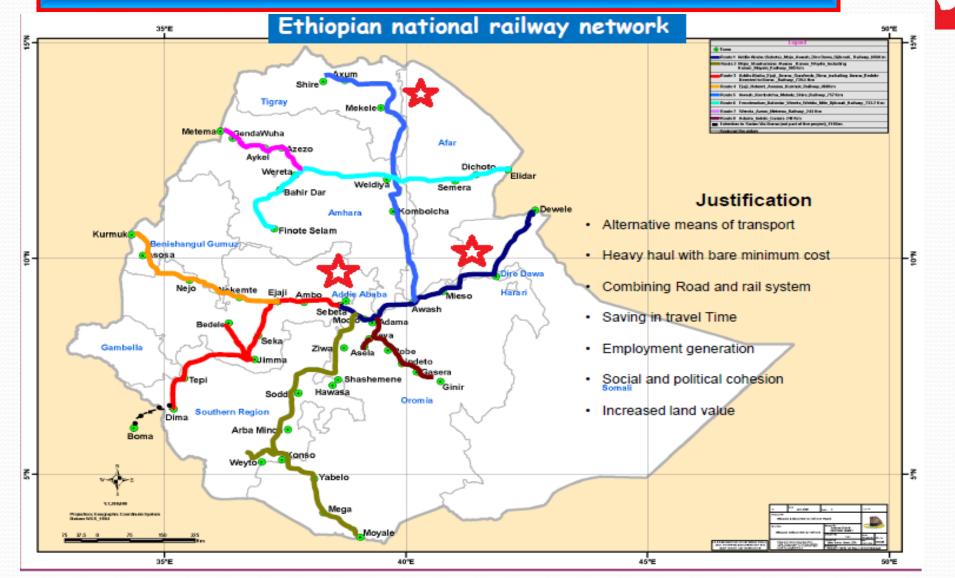
7)


		Spending US\$ p/y		Saving US\$ p/y	
Import Co	al with FOREX (US\$) currently	\$	304.254.000		
Reductio	n of imported coal	(spe	nding FOREX p. y.)	(saving	FOREX p. y.)
	40%	\$	182.548.080	\$	- 121.705.920
	60%	\$	121.710.600	\$	- 182.543.400
-	cessed PJ at cement kiln (calculated in ctual costs arise in Birr)	(spe	nding local currency p/y)		
	40%	\$	37.191.000		
	60%	\$	55.774.950		
Total cost	s fuel (imported coal + PJ):	(cost	ts fuel coal + PJ)	(saving	on fuel p/y)
	40%	\$	219.739.080	\$	- 84.514.920
	60% Creating Wealth T	\$ hrough	177.485.550	\$	- 126.768.450

Reduction of CO2 Emission from Coal					
	Thermal Substitution Rate				
Target	10%	40%	60%		
NCSC only (T/Y CO ₂ reduced)	33,000	133,000	200,000		
Total cement inds. (T/Y CO ₂ reduced)	391,000	1,564,500	2.347,000		

Reduction of other hazardous Emissions in

comparison to Coal


- NOX minus 10 25% *)
- SOx minus 40 80% *)
- Heavy metals in fine dust from chimney:
 - Hg (Mercury)
 - Pb (Lead)
 - Cd (Cadmium)
 - All other HM contained in coal
- * depending on thermal substitution rate

Proximity of the invaded areas to Cement plants(road)

Proximity of the invaded areas to Cement plants(Rail way)

Required Investment for Harvesting & in Cement Industry

Benefits for Nation

If all cements plants substitute imported coal with local PJ:

- Saving of Foreign Currency up to US\$ 182 millions/Y
- Saving of total fuel costs cement industry up to\$ 126 millions/Y
- Creation of up to 1,000 new jobs in Afar Region (harvesting/transport)
- Reduce large areas of PJ "invasion" and free agricultural land
- Significantly improved emissions from Cement Industry
- SOLUTION with WIN-WIN-WIN EFFECT for People of Ethiopia, Macro Economy Ethiopia, Cement Industry

