Remote sensing technology to capture distribution of prosopis for energy supply in Afar region, Ethiopia

Asnake Mekuriaw(PhD) and Dessie Assefa (PhD)

Panafrica geoinformation service plc

30 September 2019 Semera, Ethiopia

Outline of the presentation

- 1. Introduction
- 2. Objective
- 3. Methodology
- 4. Results
- 5. Conclusions

Introduction

- Prosopis juliflora (loccaly yewoyane halla/zaf)
- Ethiopia, it was 1st introduced in the late 1970s in the mid Awash area (EARO 2005).
- It has been expanded at the expense of grasslands, rangelands, water points, croplands (Mehari 2015).
- It is well established in the region and is rapidly invading new areas.

It is often used for fuelwood,

Charcoal Fencing homesteads House construction

Carbon sequestration

Reducing the burden on indigenous trees

- Disadvantage
 - \checkmark It limits grazing land
 - ✓ Invades irrigated areas

which would in turn; affect theecology and biodiversity andlivelihoods.

2 Objectives

- Map the spatial extent of *Prosopis juliflora*
- Estimate its AGB by using RS and GIS techniques.

3. Methodology

3.1 Prosopis mapping

(1)Basic characteristics of P (based on literature and expert knowledge).

- *Prosopis* is extremely drought resistant evergreen
- Has extensive root system
- Efficiently utilize both surface and ground water.
- Grows quickly after germination (Nuthammachot et al 2018).

• Pasieczniket al(2004), it can grow in a wide range of conditions

✓In any soil type

- ✓ Areas below 200 to 1500 m asl
- ✓ Rainfall: from 50 to 1500 mm
- ✓ Temp: withstand & survive temp as high as 50° C (air)

 \checkmark *Prosopis* possess allelopathic & allelochemical effects on other plant

species (Elfadl and Luukkanen, 2006).

(2) Data

• Satellite data: Sentinel-2 level 1-C taken in the dry season

- **Reference data:** Collected from each land use/cover type.
- Waterways, rivers, road network, and built-up areas were identified.

(3) Image classification

- The EO data was classified into vegetative & non-vegetative land.
- The vegetated land was again classified into prosopis & non-prosopis dominated area.

3.2 AGB estimation

- The usual methods for determining AGB of forests are:
- ✓ The combination of forest inventories with allometric tree biomass regression models (Houghton, 2005).
- ✓ We developed allometric equation for *Prosopis* from a total of 3034 trees

Forest inventories

DBH and height measurement

Dry mass and wood density estimation

Green weight measurement

4. Results

- It was highly distributed in southern parts of Afar region
- Awash Fentale, Amibara, Gewane have high AGB than the other parts.

4. Dry total biomass

- The dry biomass of each tree was above 2 kg
- The average dry total biomass was 39,057 kgs/ha, 4405-126,778kgs
- The dry total biomass in the study area was 8.7 billion kgs.

Concluding remark

- It is a good source of energy
- Land use planning is required
- In the degraded land, prosopis can be considered as a land reh option, carbon sequestration and to mitigate climate change.
- In the fertile land there should be land use conversion
- Prosopis areas should be given for the youth.
- There should be responsible organization to coordinates efforts

Thank you!